Porcine glutathione transferase Alpha 2-2 is a human GST A3-3 analogue that catalyses steroid double-bond isomerization.

نویسندگان

  • Natalia Fedulova
  • Françoise Raffalli-Mathieu
  • Bengt Mannervik
چکیده

A primary role of GSTs (glutathione transferases) is detoxication of electrophilic compounds. In addition to this protective function, hGST (human GST) A3-3, a member of the Alpha class of soluble GSTs, has prominent steroid double-bond isomerase activity. The isomerase reaction is an obligatory step in the biosynthesis of steroid hormones, indicating a special role of hGST A3-3 in steroidogenic tissues. An analogous GST with high steroid isomerase activity has so far not been found in any other biological species. In the present study, we characterized a Sus scrofa (pig) enzyme, pGST A2-2, displaying high steroid isomerase activity. High levels of pGST A2-2 expression were found in ovary, testis and liver. In its functional properties, other than steroid isomerization, pGST A2-2 was most similar to hGST A3-3. The properties of the novel porcine enzyme lend support to the notion that particular GSTs play an important role in steroidogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting human glutathione transferase A3-3 attenuates progesterone production in human steroidogenic cells.

hGSTA3-3 (human Alpha-class glutathione transferase 3-3) efficiently catalyses steroid Delta(5)-Delta(4) double-bond isomerization in vitro, using glutathione as a cofactor. This chemical transformation is an obligatory reaction in the biosynthesis of steroid hormones and follows the oxidation of 3beta-hydroxysteroids catalysed by 3beta-HSD (3beta-hydroxysteroid dehydrogenase). The isomerizatio...

متن کامل

The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific glutathione transferase.

Oxylipins play important roles in stress signaling in plants. The compound 12-oxophytodienoic acid (cis-OPDA) is an early biosynthetic precursor of jasmonic acid (JA), the key phytohormone orchestrating the plant anti-herbivore defense. When consumed by feeding Lepidopteran larvae, plant-derived cis-OPDA suffers rapid isomerization to iso-OPDA in the midgut and is excreted in the frass. Unlike ...

متن کامل

Mutational analysis of human glutathione transferase A2-2 identifies structural elements supporting high activity with the prodrug azathioprine.

Glutathione transferase (GST) A2-2 is the human enzyme displaying the highest catalytic activity with the prodrug azathioprine (Aza). The reaction releases pharmacologically active 6-mercaptopurine by displacing the imidazole moiety from the Aza molecule. The GST-catalyzed reaction is of medical significance, since high rates of Aza activation may lead to adverse side effects in treated patient...

متن کامل

Glutathione transferases: a structural perspective.

The glutathione transferases (GSTs) are one of the most important families of detoxifying enzymes in nature. The classic activity of the GSTs is conjugation of compounds with electrophilic centers to the tripeptide glutathione (GSH), but many other activities are now associated with GSTs, including steroid and leukotriene biosynthesis, peroxide degradation, double-bond cis-trans isomerization, ...

متن کامل

Preferential increase of glutathione S-transferase class alpha transcripts in cultured human hepatocytes by phenobarbital, 3-methylcholanthrene, and dithiolethiones.

In rodents, a diversity of compounds are able to protect against acute and chronic toxicities of various xenobiotics including carcinogens, at least in part through induction of drug-metabolizing enzymes including glutathione S-transferase (GST) enzymes. We have posed the question as to whether or not these compounds also induce GSTs in human liver. Primary human hepatocyte cultures were expose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 431 1  شماره 

صفحات  -

تاریخ انتشار 2010